翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Retraction (category theory) : ウィキペディア英語版
Section (category theory)

In category theory, a branch of mathematics, a section is a right inverse of some morphism. Dually, a retraction is a left inverse of some morphism.
In other words, if ''f'' : ''X'' → ''Y'' and ''g'' : ''Y'' → ''X'' are morphisms whose composition ''f'' o ''g'' : ''Y'' → ''Y'' is the identity morphism on ''Y'', then ''g'' is a section of ''f'', and ''f'' is a retraction of ''g''.
Every section is a monomorphism, and every retraction is an epimorphism.
In algebra the sections are also called split monomorphisms and the retractions split epimorphisms.
In an abelian category, if ''f'' : ''X'' → ''Y'' is a split epimorphism with split monomorphism ''g'' : ''Y'' → ''X'',
then ''X'' is isomorphic to the direct sum of ''Y'' and the kernel of ''f''.
==Examples==
In the category of sets, every monomorphism (injective function) with a non-empty domain is a section and every epimorphism (surjective function) is a retraction; the latter statement is equivalent to the axiom of choice.
In the category of vector spaces over a field ''K'', every monomorphism and every epimorphism splits; this follows from the fact that linear maps can be uniquely defined by specifying their values on a basis.
In the category of abelian groups, the epimorphism Z→Z/2Z which sends every integer to its image modulo 2 does not split; in fact the only morphism Z/2Z→Z is the 0 map. Similarly, the natural monomorphism Z/2Z→Z/4Z doesn't split even though there is a non-trivial homomorphism Z/4Z→Z/2Z.
The categorical concept of a section is important in homological algebra, and is also closely related to the notion of a section of a fiber bundle in topology: in the latter case, a section of a fiber bundle is a section of the bundle projection map of the fiber bundle.
Given a quotient space \bar X with quotient map \pi\colon X \to \bar X, a section of \pi is called a transversal.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Section (category theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.